杨平选择干细胞培育肌肉做课题,并非心血来潮,而是经过深思熟虑的。
如果获得成功,以后比较容易向培育其它器官过度,比如皮肤、肌腱、韧带、软骨、骨,甚至关节。
放长远一些,还可以向培育心脏、肝脏、肾脏等发展。
这个课题组织技术和设备相对也会方便很多,比如纳米微支架,通过高桥比较容易获取。
纳米微支架对3D打印技术要求非常高,其三维结构排列是细胞集群层面,要能够做到引导肌纤维进行空间构型。
这种级别的3D打印技术目前国内没有,核心技术被德日企业垄断。
这也是杨平寻求国际合作的原因,一个人不可能去突破所有的工业技术,自己只能在医学技术上努力。
美国和日本现在无法克服的障碍是细胞的崩溃,崩溃源于某些细胞结构的不稳定,不稳定的因素很多,可能细胞膜不稳定,也可能细胞器不稳定。
现在诸多论文假设说什么的都有,这些崩溃因素,任何一个因素作为启动因素,引起细胞崩溃,导致其它结构跟着崩溃。研究者在观测的时候,由于各种原因,侧重一方,不足为怪。
这是人工诱导干细胞分化的必然结果,在诱导技术不成熟的情况下,势必引起部分结构不稳定,这是崩溃的潜在原因。
其实,干细胞在脏器培育这一块,已经开展得如火如荼。
东京大学还培养出世界上第一颗心脏,直径1毫米,心室心房血管结构齐全,跟老鼠胎儿心脏大小差不多。
同是日本的国立成育医学中心培育出肝脏;英国爱丁堡大学培育出肾脏;美国哈佛大学培育出皮肤。
这些技术都面临一个共同的问题——成熟与稳定。
如果这个问题解决,这些技术才能从实验室走向临床。
肌肉培养目前还是最成熟的,可以移植到动物体内,获得几个星期的成活时间。
那些内脏,比如心脏,直径才一个毫米的小心脏,再往上培养,就面临崩溃的问题,无法让小心脏顺利长大。
杨平想从肌肉开始,解决成熟与稳定的问题。
然后扩展到皮肤、肌腱、软骨等,这些在骨科应用十分广泛。
有了皮肤,不用拆东墙补西墙地植皮或做皮瓣。
有了肌腱,那些韧带重建的病人手术效果会更好。
有了软骨,可以解决软骨退变性疾病,比如老年性膝关节骨关节炎。
甚至培育出一个关节,进行关节置换。
干细胞是未来外科最具前景的领域,它将改变外科的历史。
或许有一天,余水莲这样的病人,可以用她自己的细胞培育出完整的下半身,然后行移植手术,将上下半身连接,恢复完整的身体。